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Generalization of one inequality from IMO
2001

Arkady Alt 27

ABSTRACT. Using only AM-GM inequality here was obtained all real positive
k such, that inequality
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; Y1+ kx; V14 k (1)

holds for arbitrary 1, x2, ..., Tn+1 > 0 subject to x1w2...7p41 = 1.
This inequality generalize inequality
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and zyz = 1, which, up to substitution x = —c,y = %, Z= a—.equivalent to
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well known inequality
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Theorem. Let n and m be arbitrary natural numbers, m > 2 and let
k > 0. Then inequality
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with equality condition z; = z3 = ... = 2,,;1 = 1 holds for arbitrary real
T1, %2, ..., Tn41 > O,such that z122..2n41 =1 if and only if k> (n+1)™ - 1.

Proof.
Necessity. Suppose that inequality (3) holds for arbitrary real
T1,T2,...; Tn4+1 > O,such that z125...2,11 = 1,then in particularly it holds for
T1=T2=..=2x, =z and T4 = —n,where z > 0 arbitrary real number
T
and we have
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To prove sufficiency we need to do some preparation, namely we need:

Lemma 1. For any natural m > 2 and any real 6 > 1 there is real positive
B and p,such that
for any real positive ¢ holds inequality

Y14+ (0 1)t <1+ BeP, (4)

with equality condition ¢ = 1.
Proof. Since

V1i+ (@™ —1Dt<1+6tP < 14+ (0™ - 1)t < (1 + BtP)™ —

(0™ 1)t < ij (3) sire
=1

we have to determine 3, p > 0 such that latter inequality should be right for
any t > 0, with equality condition ¢ = 1.

Applying weighted AM-GM inequality to tP i =1,2,...,m with the weights
wi = (2B, i =1,2,...,m,we obtain:
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We claim W = 6" — 1 and
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and that imply 8 =60 —1 and pzmgm_—l(g_—l);

Lemma 2. Let n be arbitrary natural number and let real 8 > n.Then
for any positive real a1, ag, ..., an+1 holds inequality
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with equality condition a; = as = ... = any1.
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We claim W = 0™ — 1 and
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and that imply S=60—1 and p= m;

Lemma 2. Let n be arbitrary natural number and let real 8 > n.Then
for any positive real ai, ag, ..., an,+1 holds inequality
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with equality condition a1 = as = ... = an41.
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Proof. Applying AM-GM inequality we obtain:
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Now we can prove sufficiency.

Let k> (n+1)" —1and 0 := ¥/1+k, then k = 6" — 1 and by
lemmal there is 3, p > 0 such that for any real > 0 holds inequality
Yi+kzr= %/1+ (0™ —1)x <1+ BxP, where

f=0-1=1+k —1>n.
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then by Lemma 2 we obtain
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As Corollary from Theorem we obtain by substitution that:

1. inequality
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holds for any positive ay, as, ..., any1 iff & > (n+1)™ — 1. (substitution
gy = DB Inl o 9. ..n+1 in inequality (3) ); and

n
a;

2. inequality

i a; n—+1

7
E m/ > y(Ant2 = a 7
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holds for any positive ai, ag, ..., ant1 iff & > (n + 1)™ — 1. (substitution
Ty = alfl,i =1,2,...n + 1 in inequality (3) ).
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